
ABSTRACT
Objective: This article provides resources for educators 
performing online assessments to curb cheating. We will 
focus on a method to prevent cheating known as “peer-
to-peer sharing” (P2PS), where students take the test 
together without supervision. Using probability theory, 
we develop the framework for rigorously analyzing P2PS 
for given parameters of question pool size, assessment 
size, and class size.  

Methods: The development was as follows: (1) We define 
“integrity” and “reliability” of online assessments in 
the context of P2PS; (2) we derive formulas for both 
reliability and integrity; (3) we address the question of 
how large a question bank should be to attain a specified 
level of reliability and integrity, paying special attention 
of efficiency: (4) we provide a table with sample results 
for common classroom scenarios to help educators devise 
efficient question banks; and (5)  we include summary 
charts of cheating methods and strategies. Theoretical 
models are used to characterize the probabilistic 
scenario we explore. We use the cumulative distribution 
function of the hypergeometric function to model this 
relationship. This model was verified using computer 
simulations.

Results: Probability theory was used to both define 
and derive formulas for “reliability” and “integrity” of 
an online assessment. Charts were created that include 
question pool size, question number, integrity and 
reliability for a given student class size.

Conclusion: Educators can use the Tables in this article to 
determine a reasonable question pool size and amount 
of questions for an assessment to obtain the integrity and 
reliability they desire given class size. Summary charts of 
cheating methods and strategies are included from the 
literature to provide resources for further exploration of 
management of cheating and promoting test integrity 
and reliability. It is difficult to achieve both reliability 
and integrity if a large portion of the class cheats unless  
 

the question pool is very large. (J Contemporary Chiropr 
2020;3:92-100)

Key Indexing Terms: Chiropractic; Classroom Assessment; 
Cheating; Testing Procedures

INTRODUCTION
Online assessment is an important part of academia 
for virtual primary education, online degree programs 
and clinical degrees. This emergence of a more fully 
online educational era was accelerated by the Covid-19 
Pandemic. Assessments require parameters that 
maintain high integrity and reliability while not having 
an overburden of unrealistic question pool size. This 
need for question pool efficiency is the impetus for this 
endeavor.

We introduce the benefits and challenges of computer-
based testing (CBT) and expand them into the online 
environment. We look at the challenges of cheating and 
related strategies of mitigation and detection. We focus 
on the challenge of balancing assessment parameters 
such as class size, question bank size, assessment size 
and maximum number of overlapping questions. Further 
definition of these parameters are described in Table 2. 
The benefits of computer-based testing (CBT) include 
question duplication, question randomization, answer 
randomization, ease of administration, immediate 
feedback of results (1) and similarity to emerging 
standardized licensure tests. Grade performance 
comparisons between CBT and paper have been mixed. 
(2) The challenges of CBT include initial set up and 
cheating. (1)  

Academic cheating is defined as “unethical or 
unauthorized academic activity.” (3)  The negative 
effects of cheating include unfairness to honest students, 
(3-7) questionable assessment validity (3), reinforce 
cheating in the future (4), allowing inadequately 
prepared students to pass, inadequate preparation for 
standardized exams required for licensure and affecting 
assessment grade curves. The prevalence of cheating 
has significant variation [between 5 to 94% ] and varies 
geographically (7) and by context. (4,5) From 1963 to 
1993, self-reported cheating increased and may be related 
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to changing social climate. (5) Cheating seems to effect 
individual performance; however, does not seem to 
result in statistically significant population differences. 
(2) Lower GPA students have a greater correlation with 
cheating activity (r=-.23). (5) Superficial study methods 
correlate with more cheating activity. (7) See Table 1 for 
a list of cheating methods with strategies for solution. 
We focus on the set up of assessment parameters to avoid 
online coordinated cheating (aka “peer-to-peer sharing”) 
by limiting question overlap.

METHODS
Formal Problem Statement 

We first introduce notation for quantities that will be 
commonly used in this section (Table 2):

We can now phrase the central question this section 
seeks to answer as follows: Given a class of s students, 
where each student is given an assessment of n questions 
drawn randomly (without replacement) from the same 
question bank of N questions: “What is the probability  
 

that no pair of students has more than q questions in 
common?”

Notation and Definitions

Integrity: We will define the integrity of an assessment, 
denoted as I, as the percentage of questions any pair of 
students are guaranteed not to have in common. So if we 
want to insure that no pair of students has more than q 
questions in common, then the minimum percentage of 
questions they do not have in common, or the integrity 
of that assessment, would be:

93

Platform Cheating Methodology Prevention, Detection

Content 
Delivery

Both General Professor enthusiasm helps (8)

Pretest Both General Prime legal consequence not helpful (4,5)

Pre, Intra Both
Studying Question dumps (aka Item Pre-knowledge 
(IP)) 25%

ECA, Avoiding Local Dependence (LD) (5) Psychometrics 
(3,6)

Intra Both Examinee ID Palm, retinal, fingerprint readers, random photos (1)

Intra Both
Seeing other’s responses and/or coordinated near 
cheating

Acinonyx analysis (9), Avoid tiered lecture theatres or 
closely placed desks (9)

Intra Both
Question copying and dumping into sites by students 
(6,10) 52-67% (3)

Exposure Control Algorithm (ECA) (1,11)  

Intra Both
Unauthorized material (cheat-sheets, drink bottles, gum, 
wallet, smart watch)

Proctoring, Video

Intra Inclass Seeing innocent other’s responses Proctoring, Video, Exam comparison

Intra Online
Unauthorized material (same as above plus screen sticky 
notes, friend behind screen)

Controlled testing environment (random videoing/
photos, eye tracking) 

Intra Online
Printing questions, rare (2), Screencapture with Window 
prt sc

Web lock, Lockdown browser

Intra Online Videoing exam Random photos

Intra Online
Internet searching 10% (Wilcox, 2019) with ctrl c then 
ctrl v

Web lock, Lockdown browser (1)

Intra Online Online coordinated cheating (social media, test groups)

Acinonyx analysis (9), Limit time to take exam, increase 
Bloom’s level of exam questions, Question answer 
timing and path data between students (2), Assessment 
parameters

Post Both Computer hacking
Comparison with actual test, fluctuation in average, 
comparison of sequential back ups

Symbol Parameter

s Class size (number of students in a given class)

N
Question bank size (number of questions in 
question bank)

n
Assessment size (number of questions on an 
assessment)

q
Maximum number of questions we want any pair of 
students to have in common

Table 1. Methodologies for Cheating and Prevention/Detection

Table 2. Commonly Used Notation
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(i) I=(1-(q+1)/n)*100%.

This definition of integrity gives us an upper limit on the 
degree to which any pair of students can cheat solely by 
sharing their answers. So if an assessment has an integrity 
of 70%, this means that the students have at most 30% of 
their questions in common, telling us the extent to which 
they can cheat. Given the integrity, the most questions 
any pair of students can have in common is:

(ii) q=Floor[n*(1-I/(100%))].

Where the “floor function” rounds q down to the next 
lowest integer. 

Reliability: When randomly drawing questions from a 
common pool, nothing is guaranteed. It is possible, even 
in a large class, for every student to get exactly the same 
n questions. However, if the size of the question bank is 
large enough, we know that this is very unlikely to occur. 
What we would like to do is quantify the probability that 
a randomly generated assessment for a class will have a 
certain integrity. 

We will call the likelihood that an assessment for 
an entire class has an integrity of I, as the level of 
reliability of the assessment, and shall denote it by R. 
Therefore an assessment which had an integrity of 80% 
with a reliability level of 90%, means that for 90% of 
the assessments we generated for a class, every pair of 
students would have 20% (100%-Integrity) or less of 
their questions in common.

 

Reliability, in a sense, tells us for what percentage of 
assessments our method “works” (i.e. has a certain 
integrity). This concept is a common in practically any 
type of statistical methodology and is analogous to the 
“confidence level” used for a confidence interval.

Theory

Since we are interested the number of questions on 
an assessment that pairs of students have in common, 
we start by labelling the students 1,2,3,…,s and let Xi,j 
denote the number of questions students i and j have in 
common. The reliability of an assessment with integrity 
I, or the probability that every pair of students will have 
q questions in common or less (where q is determined 
using i.b) is:

(iii)  R=Prob(X_1,2≤q and  X_1,3≤q and ….X_

However, the number of questions in common between 
any pair of students is independent of any other pair of 
students (since the questions are drawn randomly for 
each student). Therefore, since the probability of the 
conjunction of independent events is the product of the 
probability of the events, it follows that:

(iv)  R=Prob(X_1,2≤q )*Prob(X_1,3≤q)*….*Prob(X_

The probability that any two students will have q 
questions or less in common is independent of the pair of 
students chosen, so each of the probabilities on the right 
side of (ii.b) are equal. Hence we can drop the student 
label subscripts and simply let X denote the number of 
questions any two randomly chosen students have in 
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q I=100*(1-q/n) F(q)=HYPGEOM.DIST(q,n,n,N) R=100*[F(q))^[s*(s-1)]

0 100 0.330476 0.000

1 90 0.738472 0.000

2 80 0.939981 0.000

3 70 0.991775 17.651

4 60 0.999328 86.841

5 50 0.999968 99.334

6 40 0.999999 99.983

7 30 1.000000 100.000

8 20 1.000000 100.000

9 10 1.000000 100.000

10 0 1.000000 100.000

Parameter Values

N 100

s 15

n 10

Table 3. Sample calculation for integrity and reliability using Excel.
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common. Letting F(q)= Prob(X≤q) the expression for R 
reduces to:

(v)  R=F(q)*F(q)*….*F(q)}number of pairs of 
students

Since there are s(s-1)/2 pairs of students, it follows that:

(vi)  R=F(q)^(s(s-1)/2)

F(q), the probability that 2 randomly chosen students 
have less than q questions in common, comes from 
probability theory. To explain the derivation of F(q), 
we consider a scenario where n questions are randomly 
drawn from the question bank: first for one student 
(student 1) and then for the other student (student 2). 
After the n questions are randomly drawn for student 1, 
we can partition the N questions from the question bank 
into 2 sets: the n questions that were drawn for student 
1 and the N-n questions from the bank that were not. 
Now when the questions for student 2 are drawn we can 
similarly partition them as shown below.

The probability that student 2 will draw x questions 
from the n questions drawn for student 1 and draw n-x 
questions from the N-n questions student 1 did not draw 
is given by the hypergeometric distribution (12):

(vii) Prob(X=x)=(((n/x))((N-n/n-x)).)/(((N/x)).)       

Where ((m/k))    gives the number of combinations or 
ways k objects can be chosen (without replacement) from 
a set of m objects.

 Of course to obtain our desired quantity, F(q), we just 
sum up all of these probabilities from x=0 to x=q, to get:

(viii)  F(q)=Prob(X≤q)=∑_(x=0)^

The function F(q) is commonly known in probability 
theory as the “cumulative distribution function” (or 
CDF), and it can easily be computed by most commonly 
used software (like Excel).

Some Sample Calculations

We note that the integrity is a function of only q (the 
maximum number of questions any two random pair of 
students can have in common) and n (assessment size).  
The reliability, on the other hand, is a function of q,n, s 
(class size), and N (question bank size).

To illustrate how I and R are computed, we present 
some calculations for a sample problem involving an 
assessment of 10 questions (n=10) each drawn randomly 
from a question bank of 100 questions (N=100) for a 
class of 15 students (s=15). In Table 3, we show how the 
integrity and reliability are computed (in Excel) for each 
value of q (i.e. maximum number of questions any pair 
of students can have in common).

Figure 1 shows the plots of the integrity (I) and the 
reliability (R) in Table 3 as a function of q. We see that 
at q=0, I starts at 100% and decreases linearly to 0% at 
q=n., as predicted from equation (i). R on the other hand, 
begins at 0% and decreases continually as q increases, 
until it reaches 100% at q=n. Mathematically, we expect 
R to be an increasing function of q, since R is a CDF, 
and the CDF is an increasing function of q (since the  
 
probability that the number of questions 2 students share 
is less than or equal to q increases as q increases).
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Figure 1. Reliability and integrity (10-question assessment).



Designing Tests 
Murdock and Brenneman

96

Figure 1 illustrates our first major finding: for a given 
class size (s), if both the question bank size (N) and 
assessment size (n) are fixed, we cannot construct an 
assessment with any arbitrary reliability and integrity. 
Figure 1 illustrates this fact: if we want a very high 
value for I (which occurs for 0≤q≤3), we cannot get an 
R >20%, and if we want to have a large R (which occurs 
for 5≤q≤10), I will not be more than 50%. Thus, it would 
not be possible to construct a test that had both I and R 
of at least 90% for this given size of class, assessment, 
and question bank. This result is a general one and not 
dependent on the specific values chosen for s, n, and N 
used in Figure 1. It is never possible to optimize both 
quantities simultaneously, since maximizing I minimizes 
R and vice versa. 

One solution to this problem is to notice that as q 
increases, I decreases (from 100% to 0%) and R increases 
(from 0% to 100%) , guaranteeing that the graphs of I and 
R cross exactly once. This point at which the graphs of I 
and R cross can then be used to “compromise” as to the 
best performance we can expect to achieve jointly with 
I and R. Since the curves rarely cross at an integer value 
of q, we can choose the value of q which minimizes the 
difference in I and R. Using this method in our example, 
we see from Figure 1, that the curves for I and R cross 
between q=3 and q=4. Since |R-I| is smallest at q=4, this 
is the best compromise for making both I and R large. 
Therefore when we have a class of s=15 students and we 
generate assessments of size n=10, drawn from a question 

bank of size N=100, the best we can hope to achieve is a 
reliability of 90% and an integrity of 60%. Thus, we can 
conclude that for 90% of the class assessments, no pair 
of students will have more than 40% of the questions in 
common.

Understanding the Factors Affecting Reliability and Integrity

In the last section, we showed that for a given class size 
(s), assessment size (n), and question bank size (N), we 
cannot generate assessments that have any chosen values 
for I and R. We also presented a method to find the 
optimal value of I and R we can achieve for a given s, n, 
and N.

Before getting into this method much further, it is good 
to stop and try to understand how the effect of the 
parameters in our problem, s, n, and N will act to affect 
I and R jointly. For each parameter, we will consider its 
affect alone (as the other two are held fixed)

Effect of Class Size (s)

We know that I is not affected by s, but R is. As equation 
(vi) shows, R is a probability that is raised to the power 
of the number of pairs of student. Hence, as the number 
of students increases, the number of pairs of students 
increase, and since raising a positive number less than 1 
to a larger power causes it to become smaller, it follows 
that as s increases, R decreases. Figure 2 shows a plot of I 
and R vs q for 3 different class sizes, all having n=50 and 
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Figure 2. Reliability and integrity for N=500 and n=50 at different n values.



J Contemp Chiropr 2020, Volume 3

Designing Tests 
Murdock and Brenneman

N=500. We see that as s increases, the graph of I remains 
the same, but the graph of R shifts to the right, and the 
point at which the graph of I and R cross results in lower 
joint values of I and R.

Effect of Size of the Assessment (n):

Figure 3 shows a plot of I and R for different values of n 
(keeping s fixed at 10 and N fixed at 500) created using 
MatLab. To display the plots for the different values of n 
on the same graph, q is plotted as the percentage of n. For 
all 3 values of n, I is the same. However, as n increases, 
the graph of R shifts to the right. As a consequence, the 
point where the graphs of I and R intersects also moves to 
the right, resulting in lower values of I and R. Hence, we 
conclude, as n increases, our best choices for I and R will 
both tend to decrease.

Effect of N

Intuitively, we would expect that N will not affect I but as 
N increases, R should increase. This is not so obvious from 
the mathematical formula for R (equation vi), but can be 
proven. Figure 4 shows how the curve for R moves to the left 
as N increases, causing the point of intersection between 
I and R to generally yield higher values of both I and R. 
 
To find these joint values of I and R requires a code be 
written that for a given set of values for n, N, and s, starts 
at q=0 and computes both I and R, as q is incremented by 
1. The value of Q at which R>I indicates that the graphs 
of I and R have crossed. I and R for the values of q before 

and after the crossing occur are computed and the value 
of q for which |I-R| is smaller, is chosen.

RESULTS
In this section, we show what type of performance we 
can expect from an assessment (in terms of I and R) if the 
assessment, question bank, and class sizes are all known. 
The method we will use is that described in section d. 
Using a program written in MatLab, I and R will be 
computed for each value of q from 1 to n-1. The program 
detects when the curves cross and then choosing the 
point on the side of the crossing where |R-I| is smallest.

In Table 4, we show the best joint values of R and I 
computed in this manner for some typical values of s, 
n, and N. The size of the question bank is varied from 
N=100 (perhaps the size of question bank an individual 
instructor might create) up to about N=12,000 (which 
is in the neighborhood of question banks used that 
accreditation exams in certain fields). The class size 
is varied from 15 to 60 (in increments of 15), and the 
number of questions on the assessment ranges from n=10 
to n=70 (in increments of 20)

Based on our earlier results, we would expect that for a 
fixed question bank size, I and R will improve as n or 
s decreases. Although this is generally true, it is not a 
mathematical fact, and as Table 4 shows, we see cases 
that violate this trend (such as R for N=500 and n=30). 
This is a consequence of the numerical method used to 
find the optimal choice of I and R and also due to the 
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Figure 3. Reliability and integrity for N=500 and s=15 at different values.
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fact that R increases very rapidly in the region where the 
graphs of I and R cross. 

We see that for small question banks (such as N=100), 
both the reliability and integrity degrade rapidly as n 
increases. A reasonable rule of thumb we have found 
from a number of calculations is that to insure both good 
integrity and reliability, n should be below 30% of N. Or 
conversely, if you know what size assessment you want, 
your question bank should be at least 3 times the number 
of questions on the assessment.

As N becomes larger, we generally see improvement in 
both I and R and the trend in both I and R (as either n 
or s decreases) becomes more stable. Generally, we have 
found that once the question bank exceeds 1,000, it is 
possible to attain integrity and reliability levels above 

80% for class sizes below 60 and assessments having less 
than 75 questions.

What values of I would be considered reasonable? The 
integrity tells to what degree it is possible a student can 
cheat: an integrity of 60% means, for example, that it 
is possible for a pair of students to have 40% of their 
questions in common. Considering that 40% of an 
assessment is typically 4 letter grades and probably the 
difference between failing and passing, it would seem 
reasonable to require at least that I > 60%. It is also 
important to bear in mind that the integrity gives the 
worst case scenario since q is defined as the maximum 
number of questions two students can have in common. 
So even when I=60%, it is not likely that a given pair of 
students will have 40% of their problems in common. 
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Figure 4. Reliability and integrity for s=15 and n=50 at different n values.

N=100

n 10 30 50 70

s=15 70.0 53.3 40.0 24.3

42.0 59.1 23.6 16.0

s=30 60.0 50.0 36.0 22.9

74.7 59.7 57.7 11.3

s=45 60.0 50.0 36.0 21.4

51.4 30.9 28.7 30.9

s=60 60.0 46.7 34.0 21.4

30.4 66.6 59.7 12.2

N=250

n 10 30 50 70

s=15 80.0 73.3 66.0 60.0

60.3 66.7 78.6 72.6

s=30 70.0 70.0 64.0 58.6

89.8 70.2 73.9 60.3

s=45 70.0 66.7 64.0 57.1

78.3 86.9 50.2 66.8

s=60 70.0 66.7 62.0 57.1

64.6 77.8 71.6 49.7

N=500

n 10 30 50 70

s=15 80.0 80.0 78.0 75.7

93.4 89.5 82.8 68.9

s=30 80.0 80.0 76.0 72.9

75.5 63.1 81.7 83.4

s=45 80.0 76.7 76.0 72.9

52.8 86.1 63.1 66.1

s=60 70.0 76.7 74.0 71.4

97.2 76.5 82.5 80.0

N=1,000

n 10 30 50 70

s=15 80.0 86.7 86.0 84.3

99.1 85.9 78.0 79.6

s=30 80.0 83.3 84.0 82.9

96.4 93.5 80.8 76.3

s=45 80.0 83.3 82.0 81.4

92.1 85.7 91.6 85.4

s=60 80.0 83.3 82.0 81.4

86.3 75.9 85.6 75.4

Table 4. Optimal I (red) and R (blue) for some typical scenarios.
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Moreover, even in a situation where the two students do 
have 100%-I question in common, it is highly unlikely 
all of the problems the cheating student has will be in 
the questions that overlap on their test and that of their 
accomplice’s. 

Rather than focus on the specific values of I, it would be 
better to classify I in terms of what ranges it follows into. 
A tentative classification for I where we can define 3 levels 
as shown below (Table 5a and b):

What values of R should an instructor try to attain? If we 
consider the analogy between R and the “reliability” of 
other methodologies based on probability theory (such 
as confidence levels), they typically have the values 90%, 
95%, and 99%. Usually the higher stakes involved (i.e. 
the greater the negative consequences are if the method 
does not work), the higher the reliability should be. 
Similar to how we grouped I into 3 different rankings, we 
could propose the following tentative ranges for R:

If we apply these ratings to the results for the 
hypothetical test scenarios in Table 4, they appear 
as shown below in Table 6. We see that for small 
question banks (N=100 and 250), it is not uncommon 
for both R and I to have “poor” (P) performance. 
In fact, it is not until the question bank reaches on 
the order of 1000 questions, that we generally have  
 
 

at least moderately “moderate” (M) or “high” (H) 
performance for both I and R.

We also observe that it appears easer to attain 
better values of I than R: this is partly due to our 
classification system (poor for R is below 80% while 
poor performance for I is below 60%). It may, however, 
also be a consequence of how the optimal values for 
R and I were chosen. In future work, we will analyze 
R and I in greater depth to find other methods for 
computing their joint optimal values that have more 
stable behavior.

DISCUSSION

Using Table 6, we can describe a possible scenario 
and show how the table can be used. Pretend we 
have a class of 60 students (s=60), 10 questions in 
our test (n=10) and a question pool of 100 (N=100). 
The integrity (I) is moderate; however, the reliability 
(R) is poor. We could increase our pool to N=500 to 
obtain decent I and Rs if the number of questions 
in our assessment is: n= 10, 50 or 70. We would be 
moderately relying that the parameters we choose 
would consistently (reliability) create an assessment 
that would have low amount of overlap (moderate 
integrity). As a side note, other parameters that we 
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Range R<80% 80%<R<90% R>90%

Rating Poor Moderate High

Range 1<60% 60% <I<80% I>80%

Rating Poor Moderate High

Table 5a. Integrity rating scale

Table 5b. Reliability rating scale

N=100

n 10 30 50 70

s=15 M P P P

P P P P

s=30 M P P P

P P P P

s=45 M P P P

P P P P

s=60 M P P P

P P P P

N=250

n 10 30 50 70

s=15 M M M M

P P P P

s=30 M M M P

M P P P

s=45 M M M P

P M P P

s=60 M M M P

P P P P

N=500

n 10 30 50 70

s=15 H H M M

H H M P

s=30 H H M M

P P M M

s=45 H M M M

P M P P

s=60 M M M M

H P M M

N=1,000

n 10 30 50 70

s=15 M M M M

H M P M

s=30 M M M M

H H M P

s=45 M M M M

H M H M

s=60 M M M M

M P M P

Table 6. Classifying performance for optimal I and R from Table 4 (using tables 5a and b).
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have not discussed such as the Kuder-Richardson 20 
(KR-20) would be affected adversely by n=10 if the 
questions are not discriminating between the upper 
and lower 27%. KR20 is a different measurement of 
whole “Test Reliability” for discrimination based on 
bi-serials. Using Table 6, we can consider other issues 
and how to address them. We can expand that table as 
the dynamics change. 

Limitations

This study has been performed by theory and 
simulation. Other factors may alter the results such 
as: lack of contact between groups of student (clicks), 
lack of time to coordinate answers, different order 
of questions between students, some students know 
the material better than others, speed of students 
taking exam and time limitations set by professor.  
This study assumes a “worst case” scenario. This 
scenario assumes that all students have access to each 
other (“hypersocial”) and all students cheat (“hyper-
dishonest”). Since these assumptions are incorrect, 
integrity values where depressed and thus moderate 
values were considered acceptable to adjust for this 
limitation.

Further Research

Defining group sizes for “normosocial” clicks will be 
the direction of future research in order to determine 
a more “effective s”.  Also, we will explore different 
ways to create question pools such as drawing from 
multiple question pools by lesson or degree of 
difficulty.

CONCLUSION

Educators can use the Tables in this article to 
determine a reasonable question pool size and amount 
of questions on an assessment to obtain the integrity 
and reproducibility they desire. Instructors have a 
beginning list of factors that influence resistance to 
cheating using test parameters.

Consent

IRB Assurance #N2020-5-21-M with exemption since 
it does not constitute human subjects research.  
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