PROTOTYPING A LONG-COVID STUDY WITHIN A PRACTICE-BASED SETTING, TESTING PROCEDURAL STEPS, OUTCOME MEASURES, AND PATIENT RESPONSE TO CARE
Main Article Content
Keywords
Long-COVID, Post-Viral Syndrome, Post-Acute Covid-19 Syndrome
Abstract
Purpose: To prototype the procedural steps, assessment methodologies, and participant response to care in a long-COVID research study conducted within a chiropractic practice.
Methods: Following a single-arm trial design, participants experiencing protracted COVID-19 symptoms for greater than 90 days were recruited through healthcare referrals, social media, and emails to existing patients of the participating chiropractor. Participants received 8 to12 weeks of Axial Stability Method (ASM) chiropractic care and participated in 4 assessment time points. Participant response to care and baseline assessments included participant self-reports, CareTaker Medical physiologic responses, spirometry, and balance.
Results: Recruitment resulted in 30 individuals indicating interest in the study; most individuals responded to recruitment efforts following implementation of Facebook advertisements (n=21). Seven participants were enrolled in the study. Five of the 7 participants were female and the average age was 46. Study procedures were tolerated well within the clinic, excepting spirometry. All participants either agreed or strongly agreed that the study organization, processes, staff, knowledge, and overall experience were appropriate. Overwhelmingly, participants experienced improvement in fatigue, long-Covid symptoms, and quality of life. For example, participant T-scores for the Functional Assessment of Chronic Illness Therapy – Fatigue Scale (FACIT-Fatigue) initially demonstrated that study participants were on average more fatigued than 76% (76th percentile) of the United States population, while at the end of the study participants were scoring in the 25th percentile. CareTaker Medical physiologic responses were consistent with previous chiropractic research. Unique physiologic response patterns based on initial presentation were observed for systolic blood pressure and heart rate variability (HRV) analysis using distribution entropy. Time domain analysis of HRV (root mean square of successive differences) demonstrated increased HRV response baseline to immediate post with a decrease in HRV over the course of care for most participants. Balance results were mixed.
Conclusion: Implementation of the study protocol was successful. Investigators accounted for challenges with recruitment, staffing, and scheduling. Participants reported improvement and often resolution of long-COVID symptoms, and physiologic marker responses to care were consistent with previous chiropractic research. Study design and small sample size limit response to care generalizability; findings need to be confirmed with properly powered clinical trial design.
Downloads
References
2. Science & tech spotlight: long COVID. Washington (DC): U.S. Government Accountability Office; 2022 March 02. 2p. Report no.: GAO-22-105666 Long COVID
3. Aiyegbusi OL, Hughes SE, Turner G, et al. Symptoms, complications and management of long COVID: a review. J R Soc Med 2021;114(9):428-442. doi:10.1177/01410768211032850
4. Michelen M, Manoharan L, Elkheir N, et al. Characterising long COVID: a living systematic review. BMJ Glob Health 2021;6:e005427. doi: 10.1136/bmjgh-2021-005427
5. Yaksi N, Teker AG, Imre A. Long COVID in hospitalized COVID-19 patients: a Retrospective cohort study. Iran J Public Health 2022;51(1):88-95. doi: 10.18502/ijph.v51i1.8297
6. Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis (Lond) 2021;53(10):737-754. doi: 10.1080/23744235.2021.1924397
7. Johansson M, Ståhlberg M, Runold M, et al. Long-haul post-COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: the swedish experience. JACC Case Rep 2021;3(4):573-580. doi: 10.1016/j.jaccas.2021.01.009
8. Crook H, Raza S, Nowell J, Young M, Edison P. Long covid-mechanisms, risk factors, and management. BMJ. 2021;26;374. doi: 10.1136/bmj.n1648
9. Akbarialiabad H, Taghrir MH, Abdollahi A, et al. Long COVID, a comprehensive systematic scoping review. Infection 2021;49:1163-1186. doi: 10.1007/s15010-021-01666-x
10. Sivan M, Taylor S. NICE guideline on long covid. BMJ 2020;371:m4938. doi: 10.1136/bmj.m4938
11. Stable angina: management. London (UK): National Institute for Health and Care Excellence; 2011 July 23. 22p. Report no.: CG126
12. Atrial fibrillation: diagnosis and management. London (UK):National Institute for Health and Care Excellence. 2021 April 27. 43 p. Report no.: NG196
13. Stahlberg M, Reistam U, Fedorowski A, et al. Post-COVID-19 tachycardia syndrome: a distinct phyotype of post-acute COVID-19 syndrome. Am J Med 2021;134(12):1451-1456. doi: 10.1016/j.amjmed.2021.07.004
14. Fischoff B, Brewer NT, Downs JS. Communicating risks and benefits: an evidence-based user’s guide. Silver Springs (MD): U.S. Food and Drug Administration; 2011 Aug. 236 p.
15. Pinter A, Szatmari S Jr, Horvath T, et al. Cardiac dysautonomia in depression - heart rate variability biofeedback as a potential add-on therapy. Neuropsychiatr Dis Treat 2019;15:1287-1310. doi: 10.2147/NDT.S200360
16. McCraty R, Shaffer F. Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med 2015;4(1):46-61. doi: 10.7453/gahmj.2014.073
17. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health 2017;28(5):258. doi: 10.3389/fpubh.2017.00258
18. Lu G, Yang F, Taylor JA, Stein JF. A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects. J Med Eng Technol 2009;33(8):634-641. doi: 10.3109/03091900903150998
19. Goodman BP, Khoury JA, Blair JE, Grill MF. COVID-19 dysautonomia. Front Neurol 2021;12:624968. doi:10.3389/fneur.624968
20. Aranyo J, Bazan V, Llados G, et al. Inappropriate sinus tachycardia in post-COVID-19 syndrome. Sci Rep 2022;12:298. doi:10.10.1038/s41598-021-03831-6
21. Shah B, Kunal S, Bansal A, et al. Heart rate variability as a marker of cardiovascular dysautonomia in post-COVID-19 syndrome using artificial intelligence. Indian Pacing Electrophysiol 2022;22(2):70-76. doi: 10.1016/j.ipej.2022.01.004
22. Sakur FJ, Ward K, Khatri NN, Lau AYS. Self-care behaviors and technology used during COVID-19: systematic review. JMIR Hum Factors 2022;9(2):e35173. doi: 10.2196/35173
23. Paudyal V, Sun S, Hussain R, Abutaleb MH, Hedima EW. Complementary and alternative medicines use in COVID-19: A global perspective on practice, policy and research. Res Social Adm Pharm 2022;18(3):2524-2528. doi:10.1016/j.sapharm.2021.05.004
24. Quispe-Cañari JF, Fidel-Rosales E, Manrique D, et al. Self-medication practices during the COVID-19 pandemic among the adult population in Peru: a cross-sectional survey. Saudi Pharm J 2021;29(1):1-11. doi:10.1016/j.jsps.2020.12.001
25. Poudel AN, Zhu S, Cooper N, et al. Impact of Covid-19 on health-related quality of life of patients: a structured review. PLoS ONE 2021;16(10):e0259164. doi: 10.1371/journal.pone.0259164
26. Nahin RL, Barnes PM, Stussman BJ. Expenditures on complementary health approaches: United States, 2012. Natl Health Stat Report 2016;95:1-11.
27. Clarke TC, Black LI, Stussman BJ, Barnes PM, Nahin RL. Trends in the use of complementary health approaches among adults: United States, 2002-1012. Natl Health Stat Report 2015;(79):1-16.
28. WHO global report on traditional and complementary medicine 2019. Geneva (CH): World Health Organization; 2019. 226p. Report no.: CC BY-NC_SA 3.0 IGO
29. National Center for Complementary and Integrative Health. Spinal manipulation: what you need to know [Internet]. Bethesda (MD): National Center for Complementary and Integrative Health;2022 [updated 2022;cited 2022 May 24]. Available from: https://www.nccih.nih.gov/health/spinal-manipulation-what-you-need-to-know
30. Amoroso Borges BL, Bortolazzo GL, Neto HP. Effects of spinal manipulation myofascial techniques on heart rate variability: A systematic review. J Bodyw Mov Ther 2018;22:203-08. doi: 10.1016/j.jbmt.2017.09.025
31. Sullivan S; Paolacci S; Kiani A; Bertelli M. Chiropractic care for hypertension: Review of the literature and study of biological and genetic bases. Acta Biomed 2020;91(13-S):e2020017. doi: 10.23750/abm.v91i13-S.10524
32. Win NN, Jorgensen AM, Chen YS, Haneline MT. Effects of upper and lower cervical spinal manipulative therapy on blood pressure and heart rate variability in volunteers and patients with neck pain: a randomized controlled, cross-over, preliminary study. J Chiropr Med 2015;14(1):1-9. doi: 10.1016/j.jcm.2014.12.005
33. Teodorczyk-Injeyan JA, Injeyan HS, Ruegg R. Spinal manipulative therapy reduces inflammatory cytokines but not substance P production in normal subjects. J Manipulative Physiol Ther 2006;29(1):14-21. doi: 10.1016/j.jmpt.2005.10.002
34. Brennan PC, Triano JJ, McGregor M, Kokjohn K, Hondras MA, Brennan DC. Enhanced neutrophil respiratory burst as a biological marker for manipulation forces: duration of the effect and association with substance P and tumor necrosis factor. J Manipulative Physiol Ther 1992;15(2):83-9.
35. Brennan PC, Kokjohn K, Kaltinger CJ, et al. Enhanced phagocytic cell respiratory burst induced by spinal manipulation: potential role of substance P. J Manipulative Physiol Ther 1991;14(7):399-408.
36. Christian GF, Stanton GJ, Sissons D, et al. lmmunoreactive ACTH, beta endorphin, and cortisol levels in plasma following spinal manipulative therapy. Spine (Phila Pa 1976) 1988;13(12):1411-1417. doi: 10.1097/00007632-198812000-00014
37. Budgell B, Polus B. The effects of thoracic manipulation on heart rate variability: a controlled crossover trial. J Manipulative Physiol Ther 2006;29(8):603-610. doi: 10.1016/j.jmpt.2006.08.011
38. Haavik H, Niazi IK, Kumari N, Amjad I, Duehr J, Holt K. The potential mechanisms of high-velocity, low-amplitude, controlled vertebral thrusts on neuroimmune function: a narrative review. Medicina (Kaunas) 2021;57(6):536. doi: 10.3390/medicina57060536
39. Stussman BJ, Black LI, Barnes PM, Clarke TC, Nahin RL. Wellness-related use of common complementary health approaches among adults: United States, 2012. Natl Health Stat Report 2015;(85):1-12.
40. Fairbank JC, Pynsent PB. The Oswestry Disability Index. Spine (Phila Pa 1976) 2000;25(22):2940-2952. doi: 10.1097/00007632-200011150-00017
41. Jacobson GP, Ramadan NM, Aggarwal SK, Newman CW. The Henry Ford Hospital Headache Disability Inventory (HDI). Neurology 1994;44(5):837-842. doi: 10.1212/wnl.44.5.837
42. Vernon H, Mior S. The Neck Disability Index: a study of reliability and validity. J Manipulative Physiol Ther 1991;14(7):409-415.
43. Smith E, Lai JS, Cella D. Building a measure of fatigue: the functional assessment of Chronic Illness Therapy Fatigue Scale. PM R 2010;2(5):359-363. doi: 10.1016/j.pmrj.2010.04.017
44. Acaster S, Dickerhoof R, DeBusk K, Bernard K, Strauss W, Allen LF. Qualitative and quantitative validation of the FACIT-fatigue scale in iron deficiency anemia. Health Qual Life Outcomes 2015;13:60. doi: 10.1186/s12955-015-0257-x
45. Donovan KA, Stein KD, Lee M, Leach CR, Ilozumba O, Jacobsen PB. Systematic review of the multidimensional fatigue symptom inventory-short form. Support Care Cancer 2015;23(1):191-212. doi: 10.1007/s00520-014-2389-7
46. Centers for Disease Control and Prevention. Human infection with 2019 novel Coronavirus person under investigation (PUI) and case report form OMB: 0920-1011 Exp. 4/23/2020 [Internet]. Atlanta (GA): Centers for Disease Control and Prevention;2022 [cited 2022 Aug 17]. Available from: https://epi.dph.ncdhhs.gov/cd/coronavirus/Interim%20Person%20Under%20Investigation%20Form.pdf
47. Lambert NJ. COVID-19 “long hauler” symptoms survey report. Indianapolis (IN):Survivor Corps Indiana University School of Medicine;2020.13p.
48. McFann K, Baxter BA, LaVergne SM, et al. Quality of life (QoL) is reduced in those with severe COVID-19 disease, post-acute sequelae of COVID-19, and hospitalization in United States adults from northern Colorado. Int J Environ Res Public Health 2021;18(21):11048. doi: 10.3390/ijerph182111048
49. Brazier JE, Harper R, Jones NM, et al. Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ 1992;305(6846):160-164. doi: 10.1136/bmj.305.6846.160
50. Hays RD, Sherbourne CD, Mazel RM. The RAND 36-Item Health Survey 1.0. Health Econ 1993;2(3):217-227. doi: 10.1002/hec.4730020305.
51. Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992;30(6):473-483.
52. McHorney CA, Ware JE Jr, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care 1993;31(3):247-263. doi: 10.1097/00005650-199303000-00006.
53. Gordon CR, Fletcher WA, Jones GM, Block EW. Is the stepping test a specific indicator of vestibulospinal function? Neurology 1995;45(11):2035-2037. doi: 10.1212/wnl.45.11.2035
54. Le Berre M, Guyot MA, Agnani O, et al. Clinical balance tests, proprioceptive system and adolescent idiopathic scoliosis. Eur Spine J 2017;26(6):1638-1644. doi: 10.1007/s00586-016-4802-z
55. Grostern J, Lajoie Y, Paquet N. The Fukuda stepping test is influenced by a concurrent cognitive task and step height in healthy young adults: a descriptive study. Physiother Can 2021;73(4):322-328. doi: 10.3138/ptc-2020-0013
56. Honaker JA, Boismier TE, Shepard NP, Shepard NT. Fukuda stepping test: sensitivity and specificity. J Am Acad Audiol 2009;20(5):311-314. doi: 10.3766/jaaa.20.5.4
57. Drusini AG, Eleazer GP, Caiazzo M, et al. One-leg standing balance and functional status in an elderly community-dwelling population in northeast Italy. Aging Clin Exp Res 2002;14:42-46. doi: 10.1007/BF03324416
58. Hiroyuki S,Uchiyama Y, Kakurai S. Specific effects of balance and gait exercises on physical function among the frail elderly. Clin Rehabil 2003;17:472-479. doi: 10.1191/0269215503cr638oa
59. Knutson L. Axial Stability Method: a new chiropractic approach. Self-published; 2019. 280 p.
60. Bath M, Nguyen A, Bordoni B. Physiology, chapman’s points [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [Updated 2022 May 8]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK558953/
61. Bath M, Owens J. Physiology, viscerosomatic reflexes [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [Updated 2022 May 8]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559218/
62. Fogaça LZ, Portella CFS, Ghelman R, Abdala CVM, Schveitzer MC. Mind-body therapies from traditional chinese medicine: evidence map. Front Public Health 2021;9:659075. doi: 10.3389/fpubh.2021.659075
63. Stein KD, Martin SC, Hann DM, Jacobsen PB. A multidimensional measure of fatigue for use with cancer patients. Cancer Pract 1998;6(3):143-152. doi: 10.1046/j.1523-5394.1998.006003143.x
64. Stein KD, Jacobsen PB, Blanchard CM, Thors C. Further validation of the multidimensional fatigue symptom inventory-short form. J Pain Symptom Manage 2004;27(1):14-23. doi: 10.1016/j.jpainsymman.2003.06.003
65. Karmakar C, Udhayakumar RK, Li P, Venkatesh S, Palaniswami M. Stability, consistency and performance of distribution entropy in analysing short length heart rate variability (HRV) signal. Front Physiol 2017;8:720. doi: 10.3389/fphys.2017.00720
66. Li P. EZ Entropy: a software application for the entropy analysis of physiological time-series. Biomed Eng Online 2019;18(1):30. doi: 10.1186/s12938-019-0650-5
67. Ellington M, Connelly J, Clayton P, et al. Use of Facebook, Instagram, and Twitter for recruiting healthy participants in nutrition-, physical activity-, or obesity-related studies: a systematic review. Am J Clin Nutr 2022;115(2):514-533. doi: 10.1093/ajcn/nqab352
68. Lane TS, Armin J, Gordon JS. Online recruitment methods for web-based and mobile health studies: a review of the literature. J Med Internet Res 2015;17(7):e183. doi: 10.2196/jmir.4359
69. Riganello F, Prada V, Soddu A, di Perri C, Sannita WG. Circadian rhythms and measures of CNS/autonomic interaction. Int J Environ Res Public Health 2019;16(13):2336. doi: 10.3390/ijerph16132336
70. Catai AM, Pastre CM, Godoy MF, Silva ED, Takahashi ACM, Vanderlei LCM. Heart rate variability: are you using it properly? Standardisation checklist of procedures. Braz J Phys Ther 2020;24(2):91-102. doi: 10.1016/j.bjpt.2019.02.006
71. Jenkins CR. Spirometry performance in primary care: the problem, and possible solutions. Prim Care Respir J 2009;18(3):128-129. doi: 10.4104/pcrj.2009.00057
72. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166(1):111-117. doi: 10.1164/ajrccm.166.1.at1102
73. Spielmanns M, Pekacka-Egli AM, Schoendorf S, Windisch W, Hermann M. Effects of a comprehensive pulmonary rehabilitation in severe post-COVID-19 patients. Int J Environ Res Public Health 2021;18(5):2695. doi: 10.3390/ijerph18052695
74. Wong AW, López-Romero S, Figueroa-Hurtado E, et al. Predictors of reduced 6-minute walk distance after COVID-19: a cohort study in Mexico. Pulmonology 2021;27(6):563-565. doi: 10.1016/j.pulmoe.2021.03.004
75. Bakris G, Dickholtz M, Meyer PM, et al. Atlas vertebra realignment and achievement of arterial pressure goal in hypertensive patients: A pilot study. J Hum Hypertens 2007;21:347-352. doi: 10.1038/sj.jhh.1002133
76. Torns S. Atlas vertebra realignment and arterial blood pressure regulation in 42 subjects. J Upper Cervical Chiropr Res 2012:40-45.
77. Dimmick KR, Young MF, Newell D. Chiropractic manipulation affects the difference between arterial systolic blood pressures on the left and right in normotensive subjects. J Manipulative Physiol Ther 2006;29(1):46-50. doi: 10.1016/j.jmpt.2005.11.006
78. Galindez-Ibarbengoetxea X, Setuain I, Andersen LL, et al. Effects of cervical high-velocity low-amplitude techniques on range of motion, strength performance, and cardiovascular outcomes: a review. J Altern Complement Med 2017;23(9):667-675. doi: 10.1089/acm.2017.0002
79. Goertz CH, Grimm RH, Svendsen K, Grandits G. Treatment of hypertension with alternative therapies (THAT) study: A randomized clinical trial. J Hypertens 2002;20:2063-2068. doi: 10.1097/00004872-200210000-00027
80. Goertz CM, Salsbury SA, Vining RD, et al. Effect of spinal manipulation of upper cervical vertebrae on blood pressure: results of a pilot sham-controlled trial. J Manipulative Physiol Ther 2016;39:369-380. doi: 10.1016/j.jmpt.2016.04.002
81. Bronfort G, Haas M, Evans R, Leininger B, Triano J. Effectiveness of manual therapies: the UK evidence report. Chiropr Osteopat 2010;18:3. doi: 10.1186/1746-1340-18-3
82. Goncalves G, Le Scanff C, Leboeuf-Yde C. Effect of chiropractic treatment on primary or early secondary prevention: a systematic review with a pedagogic approach. Chiropr Man Ther 2018;26:10. doi: 10.1186/s12998-018-0179-x
83. Welch A, Boone R. Sympathetic and parasympathetic responses to specific diversified adjustments to chiropractic vertebral subluxations of the cervical and thoracic spine. J Chiropr Med 2008;7:86-93. doi: 10.1016/j.jcm.2008.04.001
84. Shanthanna H, Nelson AM, Kissoon N, Narouze S. The COVID-19 pandemic and its consequences for chronic pain: a narrative review. Anaesthesia 2022. doi: 10.1111/anae.15801
85. Shoenfeld Y, Ryabkova VA, Scheibenbogen C, et al. Complex syndromes of chronic pain, fatigue and cognitive impairment linked to autoimmune dysautonomia and small fiber neuropathy. Clin Immunol 2020;214:108384. doi: 10.1016/j.clim.2020.108384
86. Brown TA, Chorpita BF, Korotitsch W, Barlow DH. Psychometric properties of the Depression Anxiety Stress Scales (DASS) in clinical samples. Behav Res Ther. 1997;35(1):79-89. doi: 10.1016/s0005-7967(96)00068-x
87. Efstathiou V, Stefanou MI, Demetriou M, et al. Long COVID and neuropsychiatric manifestations (Review). Exp Ther Med 2022;23(5):363. doi: 10.3892/etm.2022.11290
88. Graham EL, Clark JR, Orban ZS, et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 "long haulers". Ann Clin Transl Neurol 2021;8(5):1073-1085. doi: 10.1002/acn3.51350